

# Developing Practical Phosphorus and Potassium Tissue Test Recommendations and Utilizing Struvite in Modern Alfalfa Systems

Steve Norberg, Erin Mackey, Steve Fransen, John Harrison, Don Llewellyn, Liz Whitefield, Washington State University

#### **OBJECTIVES**

Develop and calibrate phosphorus ( $P_2O_5$ ) & potassium ( $K_2O$ ) nutrient recommendations for bud stage alfalfa using tissue testing for maximum profit, yield and direct comparison to current soil testing recommendations.

Compare efficacy of combinations of monoammonium phosphate (MAP) and struvite (magnesium ammonium phosphate, MgNH<sub>4</sub>PO<sub>4</sub> · 6 H<sub>2</sub>O) for fertilization of alfalfa.

Evaluate quality of hay samples at different  $P_2O_5$  and  $K_2O$  rates and tissue concentrations.

#### STUDY DESCRIPTION

### **Plot Layout:**

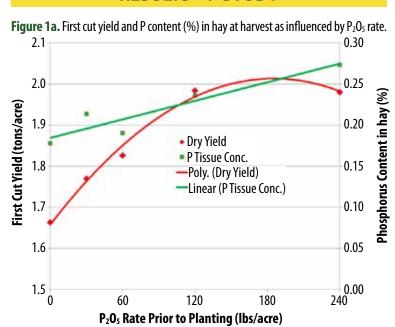
Three alfalfa research studies (P Study, K Study, and Struvite Study) were grown near Prosser, WA in South Central WA, in a low P & K testing soil.

# P Study:

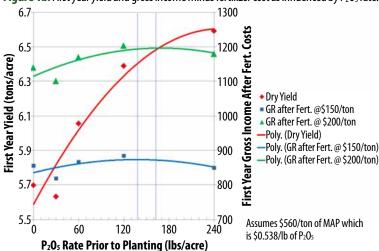
Differing rates of P<sub>2</sub>O<sub>5</sub> using MAP; including: 0, 30, 60, 120, 240 lbs/acre.

# K Study:

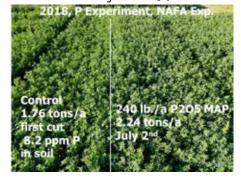
Differing rates of  $K_2O$  using K sulfate: 0, 40, 80, 160, 240, 320 lbs  $K_2O$ /acre.


#### Struvite Study:

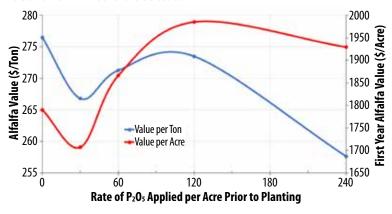
Application of 144 lbs of P<sub>2</sub>O<sub>5</sub>/acre in differing ratios of MAP:Struvite in alfalfa including: 100:0, 75:25, 50:50, 37.5:62.5, 25:75, 12.5:87.5, 0:100 and an unfertilized check.


#### **Analysis:**

Results were analyzed for yield, P or K content (ICP method), hay quality (NIRS method), maturity at harvest.


#### **RESULTS – P STUDY**




**Figure 1b.** First year yield and gross income minus fertilizer cost as influenced by P₂O₅ rate.



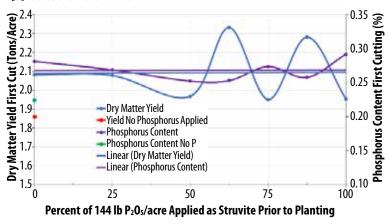
**Figure 1c.** Field view of control and high rate of  $P_2O_5$  in summer 2018.



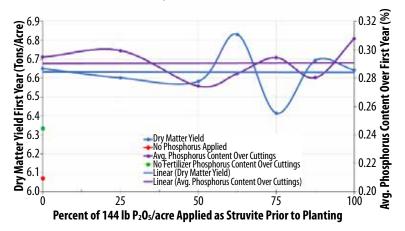
**Figure 1d.** Influence of  $P_2O_5$  on value of alfalfa hay on per ton and first year of alfalfa value from a PNW nutrient value basis.



- 140 and 165 lb/acre P<sub>2</sub>O<sub>5</sub> maximized first year gross revenue, after fertilizer costs, when soil was 8.1 ppm Olson P method and price of alfalfa hay valued at \$150 and \$200/ton respectively.
- Optimum alfalfa tissue P concentration was 0.24-0.25 for first cut, 0.28 0.29 for second cut, and 0.26-0.27 for third cut for alfalfa hay priced at \$150 and \$200/ton respectively.
- Applications of P<sub>2</sub>O<sub>5</sub> decreased hay quality so accurate rates are important to maximize profit.


#### **RESULTS – K STUDY**

• The experiment started with a 101, 73, and 79 ppm K<sub>2</sub>O in the soil (ammonium acetate method) at depths of 0-12, 12-24, and 24-36 inch depths respectively, which we did not see a yield response, yet 240 lb K<sub>2</sub>O treatment pulled 308 lb K from the soil as opposed to no application which pulled 198 lb K from the soil. Current soil testing recommendation would have been 100 lbs/acre. K<sub>2</sub>O treatment 240 lb/acre decreased RFV and RFQ and increased lignin. Further research is needed.


## **RESULTS – STRUVITE STUDY**

- Source of P<sub>2</sub>O<sub>5</sub> had no effect on first cut or first year yield or P<sub>2</sub>O<sub>5</sub> content.
- Phosphorus was needed in this trial both in first cut and first season yield and  $P_2O_5$  content.

**Figure 2a.** In 2018, first cutting dry matter yield and  $P_2O_5$  content as influenced by  $P_2O_5$  source and no fertilizer.



**Figure 2b.** First year dry matter yield and averaged  $P_2O_5$  content in the three cuttings harvested in 2018 as influenced by  $P_2O_5$  source and no fertilizer.



#### MANAGEMENT RECOMMENDATIONS/CONCLUSIONS

- Optimum P alfalfa tissue P<sub>2</sub>O<sub>5</sub> content based on first year of the experiment should be between 0.24-0.28 and 0.25-0.29 when the alfalfa hay price of \$150 and \$200/ton, respectively.
- First year data show that struvite can be used alone or in combination with monoammonium phosphate (MAP) when put on prior to planting and incorporated without a yield loss even on a soil averaging 8.1 ppm (Olson Method).
- Excessive  $P_2O_5$  of  $K_2O$  has a negative affect on hay quality and can affect aNDF, lignin, RFV, RFQ, and nutrient value of hay (\$/ton).

